Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38378123

RESUMO

A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.


Assuntos
Perciformes , Petróleo , Animais , Exposição Dietética/efeitos adversos , Petróleo/toxicidade , Perciformes/fisiologia , Ácidos Graxos , Colesterol
2.
Microbiol Spectr ; 10(1): e0058721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080447

RESUMO

The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems. IMPORTANCE Fish skin is an immunologically active tissue. It harbors a complex community of microorganisms vital to host homeostasis as, in healthy fish, they competitively exclude pathogens found in the surrounding aquatic environment. Crude oil exposure results in immunosuppression in marine animals, altering the relationship between the host and its microbial community. An alteration of the healthy microbiota, a condition known as dysbiosis, increases host susceptibility to pathogens. Despite reports of external lesions on fishes following the DWH oil spill and the importance of the external microbiota to fish health, there is little information on the effect of dispersed oil on the external microbiota of fishes. This research provides insight into the impact of a stressor event such as an oil spill on dysbiosis and enhances understanding of long-term sublethal effects of exposure to aid in regulatory decisions for protecting fish populations during recovery.


Assuntos
Disbiose/veterinária , Microbiota/efeitos dos fármacos , Perciformes/microbiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Disbiose/etiologia , Disbiose/microbiologia , Golfo do México , Lipídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Perciformes/metabolismo , Petróleo/análise , Petróleo/metabolismo , Poluição por Petróleo/efeitos adversos , Pele/metabolismo , Pele/microbiologia , Poluentes Químicos da Água/metabolismo
3.
Ecotoxicol Environ Saf ; 214: 112098, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33662787

RESUMO

The Deepwater Horizon blowout resulted in the second-largest quantity of chemical dispersants used as a countermeasure for an open water oil spill in the Gulf of Mexico. Of which, the efficacy of dispersant as a mitigation strategy and its toxic effects on aquatic fauna remains controversial. To enhance our understanding of potential sub-lethal effects of exposure to chemically dispersed-oil, sub-adult red drum (Sciaenops ocellatus) were continuously exposed to a Corexit 9500: DWH crude oil chemically enhanced water accommodated fraction (CEWAF) for 3-days and transcriptomic responses were assessed in the liver. Differential expressed gene (DEG) analysis demonstrated that 63 genes were significantly impacted in the CEWAF exposed fish. Of these, 37 were upregulated and 26 downregulated. The upregulated genes were primarily involved in metabolism and oxidative stress, whereas several immune genes were downregulated. Quantitative real-time RT-PCR further confirmed upregulation of cytochrome P450 and glutathione S-transferase, along with downregulation of fucolectin 2 and chemokine C-C motif ligand 20. Ingenuity Pathway Analysis (IPA) predicted 120 pathways significantly altered in the CEWAF exposed red drum. The aryl hydrocarbon receptor pathway was significantly activated, while pathways associated with immune and cellular homeostasis were primarily suppressed. The results of this study indicate that CEWAF exposure significantly affects gene expression and alters signaling of biological pathways important in detoxification, immunity, and normal cellular physiology, which can have potential consequences on organismal fitness.


Assuntos
Perciformes/fisiologia , Poluição por Petróleo , Petróleo/toxicidade , Transcriptoma/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Peixes , Perfilação da Expressão Gênica , Golfo do México , Lipídeos , Fígado/química , Poluição por Petróleo/análise , Água/análise
4.
Aquat Toxicol ; 230: 105716, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310673

RESUMO

To obtain a deeper understanding of the transcriptomic responses to oil in southern flounder (Paralichthys lethostigma), we performed quantitative PCR and RNA sequencing on liver and gill tissue after a chronic exposure (35 days) to Deepwater Horizon crude oiled sediment and after a 30-day recovery period. We wanted to understand which specific genes are differentially expressed in liver and gill tissues directly after oiled sediment exposure and with the addition of a recovery period. Furthermore, we wanted to examine specific enriched pathways in these two tissues to determine the impact of exposure with and without a recovery period on biological processes (e.g. immune function). Liver and gill tissues were chosen because they represent two distinct organs that are highly important to consider when examining the impacts of oiled sediment exposure. The liver is the classic detoxification organ, while the gill is in direct contact with sediment in benthic fishes. Examination of these two tissues, therefore, generates a broad understanding of the transcriptomic consequences of oil exposure across an organism. Gene expression for interleukin 8 (il8) and interleukin 1B (il1ß) was significantly increased versus control measurements for fish exposed to oiled sediments for 35 days in gill tissue. Hierarchical clustering of gene expression showed that tissue type was the main driver of gene expression (rather than treatment). The inclusion of a 30-day post-exposure recovery period showed a return of il8 and il1ß gene expression in the gill to baseline expression levels. However, the recovery period increased the number of differentially expressed genes and significantly affected canonical pathways in both tissue types. Pathways related to cholesterol biosynthesis were significantly suppressed in oil-exposed flounder with a recovery period, but not in the exposed flounder without a recovery period. At the end of the exposure, 17 pathways were significantly affected in the gill, including thyroid hormone metabolism-related pathways, which were the most influenced. Liver tissue from the recovered fish had the greatest number of enriched pathways for any tissue or time point (187). Cellular and humoral immune response pathways were considerably impacted in the liver after the recovery period, suggesting that the immune system was attempting to respond to potential damage caused from the chronic oil exposure. Our results demonstrate that liver and gill tissues from southern flounder were differentially altered by Deepwater Horizon oiled sediment exposure and that a 30-day recovery period after exposure substantially shifted gene expression and canonical pathway profiles.


Assuntos
Linguado/genética , Sedimentos Geológicos/química , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biologia Computacional , Brânquias/química , Brânquias/efeitos dos fármacos , Golfo do México , Fígado/química , Fígado/efeitos dos fármacos
5.
Environ Sci Technol ; 53(24): 14734-14743, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31765146

RESUMO

The Deepwater Horizon (DWH) blowout resulted in the deposition of toxic polycyclic aromatic hydrocarbons (PAHs), in the coastal sediments of the Gulf of Mexico. The immediate effects on an ecosystem from an oil spill are clearly recognizable, however the long-term chronic effects and recovery after a spill are still not well understood. Current methodologies for biomonitoring wild populations are invasive and mostly lethal. Here, two potential nonlethal biomonitoring tools for the assessment of PAH toxicity and induced biological alterations in the field, were identified using laboratory-validated methods. In this study, subadult southern flounder (Paralichthys lethostigma) were chronically exposed to DWH surrogate oiled sediments for 35 days; a subset of these exposed flounder were then provided a clean nonexposure period to ascertain the utility of selected biomarkers to monitor recovery post exposure. After chronic exposure, there was an increase in gene expression of cytochrome P450 1A but not glutathione S-transferase. There was also a notable imbalance of oxidants to antioxidants, measured as reduced glutathione, oxidized glutathione, and their ratio in the blood. Evidence of subsequent oxidative damage due to chronic exposure was found through lipid peroxidation and DNA damage assessments of liver, gill, and blood.


Assuntos
Linguado , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomarcadores , Ecossistema , Monitoramento Ambiental , Golfo do México , Estresse Oxidativo
6.
Data Brief ; 22: 934-939, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766908

RESUMO

Red drum (Sciaenops ocellatus) is an estuarine Sciaenid with high commercial value and recreational demand. During the past 50 years, overfishing has caused declines in the population that resulted in the development of red drum commercial and stock enhancement aquaculture fisheries. Despite the potential high economic value in both wild and aquaculture commercial fisheries the availability of transcriptomic data for red drum in public databases is limited. The data here represents the transcriptome profiles of three tissues: liver, testis and head kidney from red drum. The data was generated using Illumina high-throughput RNA sequencing, Trinity for de novo assembly and Blast2GO for annotation. Six individual libraries were pooled for sequencing of the transcriptome and the raw fastq reads have been deposited in the NCBI-SRA database (accession number SRP11690).

7.
G3 (Bethesda) ; 7(3): 843-850, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28122951

RESUMO

Developments in next-generation sequencing allow genotyping of thousands of genetic markers across hundreds of individuals in a cost-effective manner. Because of this, it is now possible to rapidly produce dense genetic linkage maps for nonmodel species. Here, we report a dense genetic linkage map for red drum, a marine fish species of considerable economic importance in the southeastern United States and elsewhere. We used a prior microsatellite-based linkage map as a framework and incorporated 1794 haplotyped contigs derived from high-throughput, reduced representation DNA sequencing to produce a linkage map containing 1794 haplotyped restriction-site associated DNA (RAD) contigs, 437 anonymous microsatellites, and 44 expressed sequence-tag-linked microsatellites (EST-SSRs). A total of 274 candidate genes, identified from transcripts from a preliminary hydrocarbon exposure study, were localized to specific chromosomes, using a shared synteny approach. The linkage map will be a useful resource for red drum commercial and restoration aquaculture, and for better understanding and managing populations of red drum in the wild.


Assuntos
Mapeamento Cromossômico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Perciformes/genética , Sintenia/genética , Animais
8.
J Neuroimmune Pharmacol ; 4(4): 476-88, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19757078

RESUMO

Marijuana cannabinoids, the endocannabinoids, and cannabinoid cell receptors have been shown to play important roles in immune regulation particularly as potent modulators of anti-inflammatory cytokines. The predominant cannabinoid receptor involved in this immune regulation is cannabinoid receptor 2 (CB(2)), which is predominantly expressed in B lymphocytes. However, the promoter region and mechanisms of CB(2) gene regulation are unknown in this immune cell type. Utilizing a combination of bioinformatics, 5' rapid amplification of cDNA ends (5' RACE), real-time reverse transcription-polymerase chain reaction, DNA sequencing, and luciferase reporter assays, we show that human B cells express one CB(2) transcript while mouse B cells express three CB(2) transcripts, with specific transcript selection occurring during B cell activation by lipopolysaccharide. Alignment of our sequenced RACE products to either the mouse or human genome, along with the GenBank submitted mRNA sequences, revealed that the transcripts we isolated contained previously unidentified transcriptional start sites (TSS). In addition, expression construct testing of the genomic region containing the TSSs of the mouse CB(2) exon 1 transcripts showed an eightfold increase of promoter activity over baseline. These data show for the first time that human B cells use only one TSS for CB(2) while mouse B cells use multiple TSSs and that the mouse TSSs are in a genomic area with promoter activity, thus suggesting the location of the gene promoter region. Defining these TSSs also provides clues to the various gene regulatory factors involved in the expression of CB(2) during B cell activation.


Assuntos
Subpopulações de Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Receptor CB2 de Canabinoide/genética , Sítio de Iniciação de Transcrição/fisiologia , Animais , Sequência de Bases , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Receptor CB2 de Canabinoide/biossíntese , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/imunologia , Especificidade da Espécie , Baço/citologia , Baço/imunologia , Baço/metabolismo , Transcrição Gênica/imunologia
9.
BMC Med ; 2: 34, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15369590

RESUMO

BACKGROUND: The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. METHODS: Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. RESULTS: Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. CONCLUSIONS: THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development of antiviral strategies utilizing non-psychoactive derivatives of THC.


Assuntos
Antivirais/farmacologia , Replicação do DNA/efeitos dos fármacos , Dronabinol/farmacologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Replicação do DNA/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...